
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

434-982-2209

W911NF-10-1-0131

56439-CS.9

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

25-11-2014 1-May-2010 30-Apr-2014

Approved for Public Release; Distribution Unlimited

Final Report: Research Areas 5: Securing Untrusted Binaries
with Acceptance Testing and Field Monitoring

Today’s Army relies on computing to effectively engage an increasingly sophisticated enemy. Using commercial
off the shelf (COTS) software to build Army systems has many advantages: reduced development costs, leveraging
of vendor resources and expertise, and greater functionality. Unfortunately, COTS software often includes
untrusted components that may contain any variety of uncaught coding errors, intentionally planted time or logic
bombs, trojan horses, backdoors, or other features which can cause security violations.

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Final Report, Acceptance Testing, Field Certification, Cyber security

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Jack Davidson

Jack W. Davidson, Jason D. Hiser

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Virginia
P. O. Box 400195

Charlottesville, VA 22904 -4195

30-Apr-2014

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Research Areas 5: Securing Untrusted Binaries with Acceptance Testing and Field Monitoring

Report Title

Today’s Army relies on computing to effectively engage an increasingly sophisticated enemy. Using commercial off the shelf (COTS)
software to build Army systems has many advantages: reduced development costs, leveraging of vendor resources and expertise, and greater
functionality. Unfortunately, COTS software often includes untrusted components that may contain any variety of uncaught coding errors,
intentionally planted time or logic bombs, trojan horses, backdoors, or other features which can cause security violations.

In this research, our goal is to provide high levels of software assurance for mission-critical software systems through a novel concept called
“field certification” of software. Field certification is a particular instance of a powerful, general approach that we have developed for
providing software assurance. Our general approach for providing high levels of software assurance is to logically interpose a small, trusted
software component between the application and the operating system and use this component to enforce
specific program properties to ensure the proper operation of the software application and prevent vulnerabilities, either intentionally or
unintentionally designed or inserted as part of the software from being exercised intentionally (by an malicious adversary) or unintentionally
(by a non-malicious user).

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

08/31/2012

09/19/2013

09/19/2013

11/25/2014

11/25/2014

11/25/2014

11/25/2014

Received Paper

1.00

3.00

2.00

6.00

4.00

7.00

8.00

Anh Nguyen-Tuong, Michele Co, Matthew Hall, Jason Hiser, Jack W. Davidson. ILR: Where'd My
Gadgets Go?,
2012 IEEE Symposium on Security and Privacy (SP) Conference dates subject to change. 20-MAY-12,
San Francisco, CA, USA. : ,

Benjamin D. Rodes, Anh Nguyen-Tuong, Jason D. Hiser, John C. Knight, Michele Co, Jack W. Davidson.
Defense against Stack-Based Attacks Using Speculative Stack Layout Transformation,
Run-time Verfication 2012. 25-SEP-12, . : ,

Sudeep Ghosh, Jason Hiser, Jack W. Davidson. Software protection for dynamically-generated code,
the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop. 26-JAN-13, Rome, Italy.
: ,

R Rajkumar, A Wang, J D Hiser, Anh Nguyen-Tuong, J W Davidson, J C Knight. Component-Oriented
Monitoring of Binaries for Security,
2011 44th Hawaii International Conference on System Sciences (HICSS 2011). 04-JAN-11, Kauai, HI. : ,

Anh Nguyen-Tuong, Jason D. Hiser, Michele Co, Nathan Kennedy, David Melski, William Ella, David
Hyde, Jack W. Davidson, John C. Knight. To B or not to B: Blessing OS Commands with Software DNA
Shotgun Sequencing,
2014 Tenth European Dependable Computing Conference (EDCC). 13-MAY-14, Newcastle, United
Kingdom. : ,

Sudeep Ghosh, Jason D. Hiser, Jack W. Davidson. What's the PointiSA?,
Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security. 11-JUN-14,
Salzburg, Austria. : ,

Anh Nguyen-Tuong, Michele Co, Benjamin Rodes, Matthew Hall, Clark L. Coleman, John C. Knight, Jack
W. Davidson, Jason D. Hiser. A Framework for Creating Binary Rewriting Tools (Short Paper),
2014 Tenth European Dependable Computing Conference (EDCC). 13-MAY-14, Newcastle, United
Kingdom. : ,

TOTAL: 7

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

(d) Manuscripts

Best paper award for "Software Protection for Dynamically-generated Code at 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, Rome,Italy, January 2013.

Methods, systems and computer readable media for detecting command injection attacks

System, Method & Computer Readable Medium for Software Protection via Composable Process-level Virtual Machines

Received Paper

TOTAL:

Received Book

TOTAL:

Received Book Chapter

TOTAL:

Graduate Students

Names of Post Doctorates

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Matthew Hall 1.00

1.00

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Jack W. Davidson 0.08 No
Jason D. Hiser 0.05
John C. Knight 0.02

0.15

3

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:
Matthew Hall

1

......

......

Sub Contractors (DD882)

Names of personnel receiving PHDs

Names of other research staff

NAME

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Inventions (DD882)

N

Y

Patent Filed in US? (5d-1)
Patent Filed in Foreign Countries? (5d-2)

Was the assignment forwarded to the contracting officer? (5e)
Foreign Countries of application (5g-2):

5b:

Patent Filed in US? (5d-1)
Patent Filed in Foreign Countries? (5d-2)

Was the assignment forwarded to the contracting officer? (5e)
Foreign Countries of application (5g-2):

5b:

Y

N

Anh Nguyen-Tuong

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Jason D. Hiser

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Michele Co

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

John C. Knight

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Jack W. Davidson

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Y

N

Jack W. Davidson

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Methods, systems and computer readable media for detecting command injection attacks

System, Method & Computer Readable Medium for Software Protection via Composable Process-level Virtual Machines

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

Scientific Progress

See Attachment

Technology Transfer

See Attachment

Jason D. Hiser

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

Sudeep Ghosh

University of Virginia

85 Engineer's Way

Charlottesville VA 22904

5a:

5f-1a:

5f-c:

5a:

5f-1a:

5f-c:

Research Area 5: Securing Untrusted Binaries with Acceptance Testing and Field
Monitor

Proposal Number 56439-CS
Jack W. Davidson, University of Virginia

Objective

A major problem for the Army is the inability of software testing to produce full trust in a
software system, and the resulting need to deploy software that is untrusted and thus subject
to malicious attack and failure. This research has aimed to increase the trustworthiness of
software at deployment, while providing an environment in which the (still not fully trusted)
software can operate safely after deployment despite the presence of malware or exploitable
vulnerabilities.

In particular, this research has:

• Developed methods to ensure that portions of an untrusted program that have not
undergone thorough acceptance testing (which could include time bombs, logic
bombs, back doors, viruses, etc.) cannot be executed in an insecure manner,

• Allowed installation and distribution of untrusted software such that use of the
software helps define normal behavior of the program, without compromising system
security, and

• Provided mechanisms that allow the system administrator to learn about the safe
execution of the programs and authorize additional program features post-
deployment.

Approach

Our general approach for providing high levels of software assurance is to logically interpose
a small, trusted software component between the application and the operating system (see
Figure 1) and use this component to enforce specific program properties to ensure the proper
operation of the software application and prevent vulnerabilities, either intentionally or
unintentionally designed or inserted as part of the software, from being exercised
intentionally (by a malicious adversary) or unintentionally (by a nonmalicious
user). The trusted software component, called Strata, is a highly efficient software dynamic
translator that provides facilities for efficiently monitoring and dynamically modifying a
program as it executes.

The key idea is to use the acceptance-testing phase of the software lifecycle to determine the
program properties that characterize the normal behavior (i.e., non-malicious) behavior of the
application. After acceptance testing, the application, a characterization of its acceptable
behavior, and a Strata-based Field Certification Software Dynamic Translator (FC-SDT) is
deployed. FC-SDT ensures that the application can only perform operations that were
determined or specified during the acceptance-testing phase. The following sections provides
more details about the various components and the research challenges that must be
addressed for field certification to be a viable approach for deploying potentially untrusted
code.

Application

Trusted Interposition Agent (Strata)

Host OS and CPU

Program Properties

Figure 1: Trusted software layer interposed between the application and the OS.

Scientific Opportunities and Barriers

The performed research has worked to address many research opportunities and challenges,
including:

• Determining the run-time properties and behaviors that characterize operation of each
of several classes of malware (e.g., Trojan horses, back doors, time bombs, logic
bombs, viruses, code injection attacks, arc-injection attacks, etc.),

• Determining the synergy possible between static and dynamic analyses in the
identification, observation and enforcement of program properties,

• Developing appropriate criteria and mechanisms for determining whether the pre-
deployment testing phases has sufficiently established normal application behavior,

• Determining the run-time properties and behaviors that can be disallowed without
generating false positives for non-malicious applications,

• Determining run-time enforcement policies for each suspicious or malicious
behaviors that will achieve the goal of thwarting malware while not disrupting normal
program use,

• Determining the interaction between higher-level monitoring and lower-level
monitoring policies, and

• Developing ways to structure and convey information between the acceptance testing
and the field certification components.

Significance

The Army needs high assurance that the programs it uses on sensitive data or for military
applications cannot execute malicious code. This requirement has previously limited the use
of uncertified programs. Our techniques allow uncertified software on many more systems
with a significantly improved level of security. We believe that the concept of using
acceptance testing to define the normal behavior of a program is a significant advancement to
the state of the art of software assurance. Delaying full certification of the software until

post-‐deployment provides the unique ability to safely execute an uncertified program in an
environment with secure data.

Accomplishments

We have made significant progress during our work on the project. In particular, we have:

• Designed a system for collecting traces of the application to help characterize normal
behavior. In each mechanism, we have traces that end at a system call that contain
various useful information. In particular, we have focused on a variety of information
to hold within the trace:

o System call execution,
o Function invocation,
o Basic block execution, and
o Call stack history.

• To help assist the acceptance tester, we have used automatic test generation
techniques. In particular, we have used "concolic" execution and fuzzing of the
program to generate high-coverage acceptance testing.

• We have identified a key issue in determining normal behavior of a program based on
recording program traces. This problem is generally label as “path explosion,”
relating to the potentially infinite number of possible program executions. We find
that even a single input has sources of randomness that result in a large number of
paths due to system calls such as time(), date(), gettid(), getuid(),
etc.

• We used the system to produce a prototype system for handling a special class of
uncertified software that is widely used—browser plug-ins. The system, called
COMB (Component-Oriented Monitoring of Binaries), provides fine-grained
monitoring of these untrusted components. The system is unique in that it uses
context information collected as the application runs to determine which components
are executing and apply component-specific security policies. A paper describing a
preliminary prototype was presented at the Information Security and Cybercrime
track at the 44th International Hawaii Conference on System Sciences.1

• We have investigated several mechanisms for dealing with the "path explosion
problem", a situation that potentially lead to an infinite number of possible paths
through a program, and practically results in a very large number of program paths.
In particular, we have investigated:

• Limiting the length of the path,
• Summarizing paths using regular expressions,
• Using paths of length 1, which is equivalent to characterizing which basic

blocks in a program represent normal behavior, and
• Combining the above with call stack history.

1 R. Rajkhumar, A. Wang, J. D. Hiser, A. Nguyen-Tuong, J. W. Davidson, and J. C. Knight.
Component-Oriented Monitoring of Binaries for Security. Proceedings of the 44th Hawaii
International Conference on System Sciences, Kauai, HI, January 2011, pp. 1–10.

• Findings indicate that it very challenging to fully characterize all of a program, even
with help from an acceptance tester and automatic test generation techniques.
Consequently, we have extended our system design to include mechanisms to
automatically and safely allow continued execution of unsafe program portions. We
have preliminary results on a variety of continued execution techniques that prevent
malicious programs from controlling the system when online detection mechanisms:

• When branch instruction in the program attempts to jump to unsafe or
unauthorized code, we can force the program to transfer control to a tested or
known-good target of the branch. We have several example programs where
this mechanism yields programs that continue to operate correctly, and other
programs where appropriate error-handling messages are reported.

• When a branch instruction in a program attempts to jump to unsafe or
unauthorized code, we can attempt to force the containing function to
automatically return an error code. While this technique is still preliminary,
we have one example where this may work better than the previous technique.

• We have ported our initial prototypes based on Strata, to use PEASOUP's Strata/SPRI
infrastructure. This change has allowed additional analysis and recovery mechanisms
to be implemented on programs shared libraries, not just the main program code. In
addition, the integration within this infrastructure allows testing or "vetting" of
policies before deployment.

• Our system design includes mechanisms to automatically and safely allow continued
execution of unsafe program portions. We have further refined our initial approaches
with the deeper analysis of the PEASOUP infrastructure to yield more precise
mechanisms for continued execution when unsafe code is detected. These include:

o Detecting the functions with unsafe code, and determining characteristics of
the function, such as the return type (integer, string, struct, array, float, etc.)

o Characterize common, safe return values from functions with unsafe code
(i.e., return -1 as an error code or create an empty string.)

o For functions with complex return types (i.e., a function which returns a
pointer to a structure with an array inside), our characterization technique can
also tractably analyze the type, and construct appropriate complex return
values.

• Our conversion to use PEASOUP's Strata/SPRI infrastructure has allowed us to test
and evaluate our approach on larger bodies of code, such as SPEC's CPU2006
benchmark suite. Initial findings are promising:

o Several benchmarks are characterized completely -- that is, no unsafe code is
detected on new inputs.

o On other benchmarks, continued execution techniques are successful on
several benchmarks.

o While our technique does yet not handle several programs, we have
investigated the failures and anticipate that there are only a few causes of
error, and simple extensions can resolve these issues.

• Our system design includes mechanisms to automatically and safely allow continued
execution of unsafe program portions. We have further refined our initial approaches
with the deeper analysis of the PEASOUP infrastructure to yield more precise
mechanisms for continued execution when unsafe code is detected. These include:

o After detecting the functions with unsafe code, determining characteristics of
the function (such as the return type), and characterizing common return
values, we have evaluated the effectiveness of returning a constant value.

Key findings Returning constant values from functions that return integers is
often effective at keeping the program running and useful. However,
returning NULL from a function that returns a pointer is often ineffective.
Furthermore, returning a pointer to zeroed memory is also ineffective.

o Programs often expect pointers to be return from a function with particular

properties. For example, a function that returns a pointer to a list node may
expect that the node has a valid pointer to the node's data. We explored a
profiling technique to determine the structure of data that is returned from
unsafe functions.

Key finding Structure of the memory pointed to by returned pointers is
important.

• We have continued work on converting our techniques to use PEASOUP's
Strata/SPRI infrastructure. Testing on larger bodies of code, such as SPEC's
CPU2006 benchmark suite have revealed issues and challenges that were
unanticipated. Our results have lead us to a variety of findings:

o Our techniques are now operating correctly on the entire SPEC CPU2006
benchmark suite, indicating we can analyze and protect common coding
constructs, compiler idioms, and instruction sequences.

Key finding Handling the entire instruction set systematically is important.

o Our techniques still detect that some program blocks are unsafe.

Key finding It is unlikely that we all code can be proven safe a priori.
Recovery techniques that protect the program while not executing unsafe code
will be necessary.

• We extended the Field Certification Strata/SPRI infrastructure to support 64-bit code.
This allows us to test a wider variety of applications, and also increases transition
opportunities.

• We published two papers related to the technology developed under the ARO
contract. These papers were presented at the 10th European Dependable Computing
Conference in May 2014. They are:

Framework for Creating Binary Rewriting Tools, J. D. Hiser, A. Nguyen-
Tuong, M. Co, B. Rodes, M. Hall, C. L. Coleman, J. C. Knight, and J. W.
Davidson. This paper describes a language and framework for rewriting
arbitrary binaries so that code that checks and enforces security properties can
be easily inserted into the binary either statically or dynamically.

To B or not to B: Blessing OS Commands with Software DNA Shotgun
Sequencing, A. Nguyen-Tuong, J. D. Hiser, M. Co, J. W. Davidson, J. C.
Knight. The paper describes an innovative and powerful approach that
prevents malicious adversaries from executing malicious code within a binary.
The approach is inspired by DNA shotgun sequencing that efficiently
assembles potential fragments of code to determine if command may be
malicious or not. A provisional patent has been filed covering the technique
(PCT/US2013/070180 entitled "Methods, Systems and Computer Readable
Media for Detecting Command Injection Attacks "). We are extending this
technique to handle SQL-injection attacks against web applications. These
attacks are #1 on Mitre's list of CWE/SANS list of top 25 Most Dangerous
Software Errors and #2 on OWASP's list of Top 10 Most Dangerous Software
Errors.

Collaborations and Leveraged Funding

We have been able to leverage other funding sources and collaborations in a variety of ways.

• In our Multi-University Research Initiative (MURI) project, called Helix, we have
developed several techniques and prototypes that we have leveraged in this project.

o First, we have the implemented a shadow stack. The shadow stack is
technology to monitor the program's activation stack and make shadow copies
of return addresses on the stack. We used this low-overhead technology for
Field Certification to record or verify the current activation record trace at
system call points.

o To deal with arbitrary binaries, the MURI project developed a tool called the
Stratafier. The Stratafier inserts the Strata library into any binary so that the
program will run under control of Strata. We have needed this technology to
meet our goal of dealing with arbitrary binaries.

• In our AFRL-funded project, called Kevlar, we have seen significant hardening and
extension of the base technology used for Field Certification:

o We have improved Strata and the Stratafier to be near-production quality,
ready for large-scale deployment. The technology now can safely deal with
almost any program, including programs that 1) use signal handling (including
nested signal handing), 2) throw exceptions, 3) demand high performance, 4)
use threading, 5) use interprocess communication, 6) use the network, and
many other program idioms.

o Further extended the SPRI interface to include a callback mechanism, useful
for monitoring function or system calls for potentially malicious parameters.

o Part of the Kevlar project is to port current technologies to a Windows
platform, further extending reach of the base technology for Field
Certification. Windows support will greatly enhance the impact of Field
Certification.

• Another project that we are working on is called Preventing Exploits Against
Software of Unknown Provenance (PEASOUP). Our collaboration with this project
has yielded several interesting results.

o PEASOUP deals extensively with concolic testing and smart fuzzing. We
have done preliminary investigation for using this technology for Field
Certification, but plan to use it more extensively in the next year.

o We have also developed a program rewriting interface for Strata that we call
SPRI. We plan to use this interface to help prevent malicious time bombs,
logic bombs, and other malicious codes from becoming active and resulting in
system compromise.

Conclusions

Field certification is a paradigm shift in the traditional software development lifecycle and
would represent a significant advancement to the state of the art in software assurance.
Extending the certification process to include post-deployment provides the ability to safely
executed untrusted code in Army critical applications.

Our progress to date includes several mechanisms and observations about characterizing an
application, as well as investigating preliminary approaches to assisting the acceptance test
engineers in their duties. We have identified several key problems in characterizing
applications, including the path explosion problem. Further, we have layed out plans to
explore these issues in the upcoming year.

Technology Transfer

Our techniques are predicated on the ability to perform low overhead software dynamic
translation as an application runs. This technology, although still emerging, is already in use
in industry and has demonstrated its ability to perform reliably and efficiently. Previous work
in this area has yielded two patent applications. Consequently, we believe, once completed,
that our techniques could be practically applied in a variety of realms with minimal future
research effort.

Both PIs have companies (Davidson-Zephyr Software; Knight-Dependable Computing) that
are actively engaged in commercialization of these technologies through aggressive pursuit
of relevant Small Business Innovative Research (SBIR) funds as well as strategic
partnerships with larger companies (e.g., Raytheon, SAIC, Symantec).

Zephyr Software has now received two Phase II SBIR contracts. The first is being award by
the Office of Naval Research. The title of the project, "Preventing Program Hijacking via
Static and Dynamic Analysis" takes the techniques developed as part of this Army Research
Office project and applies it to prevent a very common mode of attack used by malware—
subverting control flow of the application to effect malicious actions. Our industrial partner
on this project is Raytheon, IDS Cyber Solutions and Integration Division.

In February 2014, Zephyr Software was selected by DARPA for Phase II funding of the
project, "Embedded Systems Protection." The focus of this project is to deal with the
challenges of protecting embedded systems, which often have major constraints such as
memory constraints, real-time constraints, and power constraints that must be considered
when protecting them. Our industrial partner is Raytheon, IDS Cyber Solutions and
Integration Division.

